This version of the famous Grbl adds values in the work-coordinate-system (WCS) to the probing command. See x2grbl why you might want this.

settings.c 13KB

    /* settings.c - eeprom configuration handling Part of Grbl v0.9 Copyright (c) 2012-2014 Sungeun K. Jeon Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see <http://www.gnu.org/licenses/>. */ /* This file is based on work from Grbl v0.8, distributed under the terms of the MIT-license. See COPYING for more details. Copyright (c) 2009-2011 Simen Svale Skogsrud Copyright (c) 2011-2012 Sungeun K. Jeon */ #include "system.h" #include "settings.h" #include "eeprom.h" #include "protocol.h" #include "report.h" #include "limits.h" #include "stepper.h" settings_t settings; // Method to store startup lines into EEPROM void settings_store_startup_line(uint8_t n, char *line) { uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK; memcpy_to_eeprom_with_checksum(addr,(char*)line, LINE_BUFFER_SIZE); } // Method to store build info into EEPROM void settings_store_build_info(char *line) { memcpy_to_eeprom_with_checksum(EEPROM_ADDR_BUILD_INFO,(char*)line, LINE_BUFFER_SIZE); } // Method to store coord data parameters into EEPROM void settings_write_coord_data(uint8_t coord_select, float *coord_data) { uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS; memcpy_to_eeprom_with_checksum(addr,(char*)coord_data, sizeof(float)*N_AXIS); } // Method to store Grbl global settings struct and version number into EEPROM void write_global_settings() { eeprom_put_char(0, SETTINGS_VERSION); memcpy_to_eeprom_with_checksum(EEPROM_ADDR_GLOBAL, (char*)&settings, sizeof(settings_t)); } // Method to restore EEPROM-saved Grbl global settings back to defaults. void settings_restore_global_settings() { settings.pulse_microseconds = DEFAULT_STEP_PULSE_MICROSECONDS; settings.stepper_idle_lock_time = DEFAULT_STEPPER_IDLE_LOCK_TIME; settings.step_invert_mask = DEFAULT_STEPPING_INVERT_MASK; settings.dir_invert_mask = DEFAULT_DIRECTION_INVERT_MASK; settings.status_report_mask = DEFAULT_STATUS_REPORT_MASK; settings.junction_deviation = DEFAULT_JUNCTION_DEVIATION; settings.arc_tolerance = DEFAULT_ARC_TOLERANCE; settings.homing_dir_mask = DEFAULT_HOMING_DIR_MASK; settings.homing_feed_rate = DEFAULT_HOMING_FEED_RATE; settings.homing_seek_rate = DEFAULT_HOMING_SEEK_RATE; settings.homing_debounce_delay = DEFAULT_HOMING_DEBOUNCE_DELAY; settings.homing_pulloff = DEFAULT_HOMING_PULLOFF; settings.flags = 0; if (DEFAULT_REPORT_INCHES) { settings.flags |= BITFLAG_REPORT_INCHES; } if (DEFAULT_AUTO_START) { settings.flags |= BITFLAG_AUTO_START; } if (DEFAULT_INVERT_ST_ENABLE) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; } if (DEFAULT_INVERT_LIMIT_PINS) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; } if (DEFAULT_SOFT_LIMIT_ENABLE) { settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; } if (DEFAULT_HARD_LIMIT_ENABLE) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; } if (DEFAULT_HOMING_ENABLE) { settings.flags |= BITFLAG_HOMING_ENABLE; } settings.steps_per_mm[X_AXIS] = DEFAULT_X_STEPS_PER_MM; settings.steps_per_mm[Y_AXIS] = DEFAULT_Y_STEPS_PER_MM; settings.steps_per_mm[Z_AXIS] = DEFAULT_Z_STEPS_PER_MM; settings.max_rate[X_AXIS] = DEFAULT_X_MAX_RATE; settings.max_rate[Y_AXIS] = DEFAULT_Y_MAX_RATE; settings.max_rate[Z_AXIS] = DEFAULT_Z_MAX_RATE; settings.acceleration[X_AXIS] = DEFAULT_X_ACCELERATION; settings.acceleration[Y_AXIS] = DEFAULT_Y_ACCELERATION; settings.acceleration[Z_AXIS] = DEFAULT_Z_ACCELERATION; settings.max_travel[X_AXIS] = (-DEFAULT_X_MAX_TRAVEL); settings.max_travel[Y_AXIS] = (-DEFAULT_Y_MAX_TRAVEL); settings.max_travel[Z_AXIS] = (-DEFAULT_Z_MAX_TRAVEL); write_global_settings(); } // Helper function to clear the EEPROM space containing parameter data. void settings_clear_parameters() { uint8_t idx; float coord_data[3]; memset(&coord_data, 0, sizeof(coord_data)); for (idx=0; idx < SETTING_INDEX_NCOORD; idx++) { settings_write_coord_data(idx, coord_data); } } // Helper function to clear the EEPROM space containing the startup lines. void settings_clear_startup_lines() { #if N_STARTUP_LINE > 0 eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK, 0); #endif #if N_STARTUP_LINE > 1 eeprom_put_char(EEPROM_ADDR_STARTUP_BLOCK+(LINE_BUFFER_SIZE+1), 0); #endif } // Helper function to clear the EEPROM space containing the user build info string. void settings_clear_build_info() { eeprom_put_char(EEPROM_ADDR_BUILD_INFO , 0); } // Reads startup line from EEPROM. Updated pointed line string data. uint8_t settings_read_startup_line(uint8_t n, char *line) { uint32_t addr = n*(LINE_BUFFER_SIZE+1)+EEPROM_ADDR_STARTUP_BLOCK; if (!(memcpy_from_eeprom_with_checksum((char*)line, addr, LINE_BUFFER_SIZE))) { // Reset line with default value line[0] = 0; // Empty line settings_store_startup_line(n, line); return(false); } return(true); } // Reads startup line from EEPROM. Updated pointed line string data. uint8_t settings_read_build_info(char *line) { if (!(memcpy_from_eeprom_with_checksum((char*)line, EEPROM_ADDR_BUILD_INFO, LINE_BUFFER_SIZE))) { // Reset line with default value line[0] = 0; // Empty line settings_store_build_info(line); return(false); } return(true); } // Read selected coordinate data from EEPROM. Updates pointed coord_data value. uint8_t settings_read_coord_data(uint8_t coord_select, float *coord_data) { uint32_t addr = coord_select*(sizeof(float)*N_AXIS+1) + EEPROM_ADDR_PARAMETERS; if (!(memcpy_from_eeprom_with_checksum((char*)coord_data, addr, sizeof(float)*N_AXIS))) { // Reset with default zero vector clear_vector_float(coord_data); settings_write_coord_data(coord_select,coord_data); return(false); } return(true); } // Reads Grbl global settings struct from EEPROM. uint8_t read_global_settings() { // Check version-byte of eeprom uint8_t version = eeprom_get_char(0); if (version == SETTINGS_VERSION) { // Read settings-record and check checksum if (!(memcpy_from_eeprom_with_checksum((char*)&settings, EEPROM_ADDR_GLOBAL, sizeof(settings_t)))) { return(false); } } else { return(false); } return(true); } // A helper method to set settings from command line uint8_t settings_store_global_setting(uint8_t parameter, float value) { if (value < 0.0) { return(STATUS_NEGATIVE_VALUE); } if (parameter >= AXIS_SETTINGS_START_VAL) { // Store axis configuration. Axis numbering sequence set by AXIS_SETTING defines. // NOTE: Ensure the setting index corresponds to the report.c settings printout. parameter -= AXIS_SETTINGS_START_VAL; uint8_t set_idx = 0; while (set_idx < AXIS_N_SETTINGS) { if (parameter < N_AXIS) { // Valid axis setting found. switch (set_idx) { case 0: settings.steps_per_mm[parameter] = value; break; case 1: settings.max_rate[parameter] = value; break; case 2: settings.acceleration[parameter] = value*60*60; break; // Convert to mm/min^2 for grbl internal use. case 3: settings.max_travel[parameter] = -value; break; // Store as negative for grbl internal use. } break; // Exit while-loop after setting has been configured and proceed to the EEPROM write call. } else { set_idx++; // If axis index greater than N_AXIS or setting index greater than number of axis settings, error out. if ((parameter < AXIS_SETTINGS_INCREMENT) || (set_idx == AXIS_N_SETTINGS)) { return(STATUS_INVALID_STATEMENT); } parameter -= AXIS_SETTINGS_INCREMENT; } } } else { // Store non-axis Grbl settings uint8_t int_value = trunc(value); switch(parameter) { case 0: if (int_value < 3) { return(STATUS_SETTING_STEP_PULSE_MIN); } settings.pulse_microseconds = int_value; break; case 1: settings.stepper_idle_lock_time = int_value; break; case 2: settings.step_invert_mask = int_value; st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks. break; case 3: settings.dir_invert_mask = int_value; st_generate_step_dir_invert_masks(); // Regenerate step and direction port invert masks. break; case 4: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_ST_ENABLE; } else { settings.flags &= ~BITFLAG_INVERT_ST_ENABLE; } break; case 5: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_LIMIT_PINS; } else { settings.flags &= ~BITFLAG_INVERT_LIMIT_PINS; } break; case 6: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_INVERT_PROBE_PIN; } else { settings.flags &= ~BITFLAG_INVERT_PROBE_PIN; } break; case 10: settings.status_report_mask = int_value; break; case 11: settings.junction_deviation = value; break; case 12: settings.arc_tolerance = value; break; case 13: if (int_value) { settings.flags |= BITFLAG_REPORT_INCHES; } else { settings.flags &= ~BITFLAG_REPORT_INCHES; } break; case 14: // Reset to ensure change. Immediate re-init may cause problems. if (int_value) { settings.flags |= BITFLAG_AUTO_START; } else { settings.flags &= ~BITFLAG_AUTO_START; } break; case 20: if (int_value) { if (bit_isfalse(settings.flags, BITFLAG_HOMING_ENABLE)) { return(STATUS_SOFT_LIMIT_ERROR); } settings.flags |= BITFLAG_SOFT_LIMIT_ENABLE; } else { settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; } break; case 21: if (int_value) { settings.flags |= BITFLAG_HARD_LIMIT_ENABLE; } else { settings.flags &= ~BITFLAG_HARD_LIMIT_ENABLE; } limits_init(); // Re-init to immediately change. NOTE: Nice to have but could be problematic later. break; case 22: if (int_value) { settings.flags |= BITFLAG_HOMING_ENABLE; } else { settings.flags &= ~BITFLAG_HOMING_ENABLE; settings.flags &= ~BITFLAG_SOFT_LIMIT_ENABLE; // Force disable soft-limits. } break; case 23: settings.homing_dir_mask = int_value; break; case 24: settings.homing_feed_rate = value; break; case 25: settings.homing_seek_rate = value; break; case 26: settings.homing_debounce_delay = int_value; break; case 27: settings.homing_pulloff = value; break; default: return(STATUS_INVALID_STATEMENT); } } write_global_settings(); return(STATUS_OK); } // Initialize the config subsystem void settings_init() { if(!read_global_settings()) { report_status_message(STATUS_SETTING_READ_FAIL); settings_restore_global_settings(); // Force clear startup lines and build info user data. Parameters should be ok. // TODO: For next version, remove these clears. Only here because line buffer increased. settings_clear_startup_lines(); settings_clear_build_info(); report_grbl_settings(); } // Check all parameter data into a dummy variable. If error, reset to zero, otherwise do nothing. float coord_data[N_AXIS]; uint8_t i; for (i=0; i<=SETTING_INDEX_NCOORD; i++) { if (!settings_read_coord_data(i, coord_data)) { report_status_message(STATUS_SETTING_READ_FAIL); } } // NOTE: Startup lines are checked and executed by protocol_main_loop at the end of initialization. // TODO: Build info should be checked here, but will wait until v1.0 to address this. Ok for now. } // Returns step pin mask according to Grbl internal axis indexing. uint8_t get_step_pin_mask(uint8_t axis_idx) { if ( axis_idx == X_AXIS ) { return((1<<X_STEP_BIT)); } if ( axis_idx == Y_AXIS ) { return((1<<Y_STEP_BIT)); } return((1<<Z_STEP_BIT)); } // Returns direction pin mask according to Grbl internal axis indexing. uint8_t get_direction_pin_mask(uint8_t axis_idx) { if ( axis_idx == X_AXIS ) { return((1<<X_DIRECTION_BIT)); } if ( axis_idx == Y_AXIS ) { return((1<<Y_DIRECTION_BIT)); } return((1<<Z_DIRECTION_BIT)); } // Returns limit pin mask according to Grbl internal axis indexing. uint8_t get_limit_pin_mask(uint8_t axis_idx) { if ( axis_idx == X_AXIS ) { return((1<<X_LIMIT_BIT)); } if ( axis_idx == Y_AXIS ) { return((1<<Y_LIMIT_BIT)); } return((1<<Z_LIMIT_BIT)); }